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Abstract — Accurate localization is crucial for wireless 
ad-hoc and sensor networks. Among the localization 
schemes, component-based approaches specialize in local-
ization performance, which can properly conquer network 
sparseness and anchor sparseness. However, such design is 
sensitive to measurement errors. Existing robust localiza-
tion methods focus on eliminating the positioning error of a 
single node. Indeed, a single node has two dimensions of 
freedom in 2D space and only suffers from one type of 
transformation: translation. As a rigid 2D structure, a 
component suffers from three possible transformations: 
translation, rotation, and reflection. A high degree of free-
dom brings about complicated cases of error productions 
and difficulties on error controlling. This study is the first 
work addressing how to deal with ranging noises for com-
ponent-based methods. By exploiting a set of robust pat-
terns, we present an Error-TOlerant Component-based 
algorithm (ETOC) that not only inherits the 
high-performance characteristic of component-based 
methods, but also achieves robustness of the result. We 
evaluate ETOC through a real-world sensor network con-
sisting of 120 TelosB motes as well as extensive large-scale 
simulations. Experiment results show that, comparing with 
the-state-of-the-art designs, ETOC can work properly in 
sparse networks and provide more accurate localization 
results. 

Keywords - component-based; localization; location ambigu-
ity; robust localization; structural error tolerance 

1. Introduction 
Location awareness is highly critical for wireless ad-hoc and 

sensor networks. Due to the constraints on hardware cost and 
energy consumption, however, it is unfeasible to equip all nodes 
with positioning hardware (e.g., GPS receivers). Instead, only a 
few nodes are configured with location information in the net-
work setup phase, called anchors. Other nodes then locate 
themselves by the inter-node distance measurements. We call 
this procedure network localization. 

Recently, there are increasing literatures on network local-
ization algorithms [1], falling into two categories: node-based  

 
Fig. 1. Performance of localization algorithms 

 
design [2-4] and component-based design [5]. Node-based 
localization algorithms try to locate the entire network by indi-
vidually locating each non-anchor node, which is also called 
sequential localization. Researches on this subject [6] show that 
the Sweeps algorithm [2] is able to localize all the sequentially 
localizable networks. That is, Sweeps achieves the utmost 
performance of the node-based design. Nevertheless, there is 
still a performance gap between Sweeps and the theoretical limit 
[7, 8]. Overall, node-based design suffers the inherent limitation 
that it requires each located node to be self-localizable, which is 
not necessary for network localization. To make it clearer, we 
illustrate the development of high-performance localization 
algorithms in Figure 1. 

To narrow the gap of localization performance, compo-
nent-based localization is proposed [5]. A component is defined  
as a set of nodes that forms a rigid structure. As components are 
rigid, they can be located as a whole. Hence, besides each single 
node, component is another basic unit for localization. After 
integrated into components, nodes can collaborate with each 
other, thus to facilitate network localization. As a result, com-
ponent-based designs can locate more nodes, i.e. have higher 
performance, than the node-based ones, especially in sparse 
networks. 

Existing component-based algorithms [5], however, are 
based on the idealized model that assumes accurate distance 
measurements between neighboring nodes. Nevertheless, 
measurement errors are inevitable in practice. Based on the 
noisy measurements, the localization result may suffer struc-
tural deformation, which locates a component by an incorrect 
embedding in the physical coordinate system. Once a structural 
deformation is triggered, the error of the result is not determined 
by the measurement errors, but by the moved distances caused  
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Fig. 2. The flowchart of component-based algorithms 

 
by the deformation. Hence, the structural deformation may lead 
to huge errors in the result set. 

Unfortunately, existing designs can only achieve robustness 
in node-based localization schemes [3, 9]. As we know, a single 
node has two dimensions of freedom in 2D space (e.g., X-Y 
coordinates) and only suffers from one type of transformation: 
translation. In contrast, a component suffers from three possible 
transformations: translation, rotation, and reflection. A high 
level of freedom obviously brings about complicated cases of 
error producing and difficulties on error controlling. For com-
ponent-based approaches, to the best of our knowledge, there is 
no related work on how to deal with measurement noises before 
this study. 

To conquer such difficulties, we analyze how noisy ranging 
destroys the robustness of component realization. To quantify 
the impact of noises, an error tolerance for a component is 
defined as the upper bound of ranging errors under which the 
component can be localized uniquely (without deformation). By 
the concept of error tolerance, we present an Error-TOlerant 
Component-based algorithm (ETOC) that can achieve guaran-
teed robustness of the localization result. In addition, as a 
component-based design, ETOC inherits the property of high 
performance, where performance refers to the number of suc-
cessfully localized nodes out of all non-anchor nodes. We 
evaluate ETOC through a real-world sensor network. The 
network consists of 120 TelosB motes distributed in an area of 
126×145m2. Experimental results show that ETOC can localize 
the network entirely in spite of the network sparseness. Exten-
sive simulations also show that, comparing with the state-of 
-the-art design, Robust Quadrilaterals [9], ETOC succeeds in 
both localization performance and error control. 

The rest of this paper is organized as follows. We present the 
preliminary knowledge in Section 2. In Section 3, we introduce 
the robust patterns for ETOC. Experimental studies are pre-
sented in Section 4. We introduce related work in section 5. 
Finally, we conclude the work in Section 6. 

2. Preliminary 
In this section, we briefly introduce the basic idea of the 

component-based localization algorithm. Then, we analyze the 
key issue of achieving robustness in component-based scheme. 

2.1 Terminology 
We use a distance graph G=(V, E) to present a given  
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Fig. 3. Realization patterns of components 
 

network, in which each vertex in V denotes a node in the wire-
less network and each edge (i, j)∈E denotes a distance meas-
urement between node pair (i, j). Associated with each edge, we 
use a function d(i,j):E→R to denote the distance value, also 
abbreviated as dij. We suppose a small portion of nodes, called 
anchors, know their locations in advance. Without loss of gen-
erality, m anchors are labeled from 1 to m, together with n-m 
ordinary nodes labeled from m+1 to n, where n denotes the total 
number of nodes in the network. The ground truth position of 
each node is denoted by pi, 1≤i≤n. We uniformly use node to 
present a wireless device and use edge to present the distance 
measurement of two nodes. We also use the terms in graph 
theory to present certain special topology in the distance graph. 
For example, a triangle means three nodes can measure dis-
tances to each other. 

2.2 Overview of Component-based Localization  
Component-based localization algorithm contains three main 

procedures: component generation, component mergence, and 
component realization. We show the flowchart of the localiza-
tion process in Figure 2. The details of each step are as follows: 

1. Component generation partitions the network into a set of 
components. A component is initialized by a triangle in the 
network for constructing a local coordinate system. Then, other 
nodes join the newly generated component by trilateration. 

2. Component realization localizes a component as a whole, 
which converts the local coordinate system of a component to 
that of the physical coordinate system. 

3. Component mergence stitches two components to generate 
a larger component. Merging components is to covert the local 
coordinate system of one component to that of the other one. 

As component mergence and component realization are both 
based on converting the local coordinate system, the key of 
component-based localization is the coordinate system conver-
sion. In contrast to the traditional local maps [9, 10], compo-
nents convert their local coordinate systems by both the com-
mon nodes and the inter-coordinate-system measurements. We 
take component realization as an example, where the target 
coordinate system is the physical coordinate system defined by 
the anchors. We first differentiate the role of anchors. If an  
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Fig. 4. Component-based localization 

 
anchor belongs to the target component, we say the anchor is an 
internal anchor; otherwise, it is an external anchor. By enu-
merating the number of internal anchors, we conclude the 
complete patterns for component realization. All patterns are 
illustrated in Figure 3, where the shaded area denotes a com-
ponent, the solid squares denote anchors, the soft circles denote 
non-anchor nodes, and edges denote distance measurements 
between nodes. If there is an edge connecting an in-component 
node and an external anchor, we say the component has an edge 
linked to an anchor. Then, we list all the patterns as follows: 

(a) the target component has three or more internal anchors;  
(b) the target component has two internal anchors and at least 

one edge linked to an anchor; 
(c) the target component has one internal anchor and at least 

two edges linked to two distinct anchors; 
(d) the target component has four edges linked to at least 

three distinct anchors, where the number nodes associated with 
these edges is at least three in the component. 

Once a component matches one of the patterns, we can 
convert the local coordinate system by solving simultaneous 
polynomial equations [5]. 

Figure 4 demonstrates component-based localization. Figure 
4(a) shows the distance graph of the network. Under the view of 
each single node, none of them can be localized, because each 
node has only one neighboring anchor. In contrast to locating 
each single node, we can integrate the nodes into a component, 
as shown by the shaded area in Figure 4(b). By pattern(c), all-
non-anchor nodes can be located simultaneously. 

2.3 Ambiguity Issue in Component-based Localization 
When the distance measurements are noisy, the two coordi-

nate systems may not be precisely aligned. Such misalignment 
may produce ambiguities in localization result. Clearly, if we 
locate the component to the ground truth location in the physical 
coordinate system, the embedding will accept the measurement 
errors, where the embedded distance falls in an acceptable range 
of the measured distance. However, there may also exist alter-
native embeddings that match the embedded distances with the 
measured distances. 

For the example shown in Figure 4(a), if the measured dis-
tance between a2 and n4 is a bit shorter than the accurate value, 
the embedding of the component will be “rotated” to the place 
shown in Figure 4(c). We also plot the ground truth embedding 
of the component by the dashed lines and circles in this figure. If 

we evaluate the embedding by the discrepancy between the 
embedded distance and the measured distance, the rotated em-
bedding matches the measured distance better and become the 
final result. Comparing the two embeddings, we observe huge 
errors for all located nodes. In a word, if there exist multiple 
embeddings for a component that accept all of the noisy dis-
tance measurements, we say the localization result of the 
component is ambiguous. Hence, we define a localization al-
gorithm is robust, if it can properly avoid the ambiguities. 

3. Robust Coordinate System Conversion Patterns 
In this section, we exploit robust patterns for the coordinate 

system conversion without ambiguities. We also use component 
realization to show the robust coordinate system conversion 
patterns, for the sake of better differentiating the source and 
target coordinate system. Clearly, these robust patterns can be 
directly used for component mergence. As shown in Figure 3, 
there are only four patterns to do the conversion, so that we 
discuss each pattern in each of the following sub-sections. In 
addition, we assume that the in-component positions of the 
nodes are computed by robust node-based algorithms [3, 9] 
without ambiguities. 

3.1 Robust Realization with Three or More Internal An-
chors 

As three nodes are enough to determine a coordinate system, 
the conversion can accomplished by purely using the alignment 
of the internal anchors. To uniformly number the patterns, we 
rewrite this pattern as follow. Case 1: the component contains 
three or more internal anchors. 

The in-component coordinates of the anchors may contain 
errors because of the noisy distance measurements. Hence, it is 
unlikely that the anchors will precisely align in both of the 
coordinate systems. For this issue, there is a closed-form and 
least-square optimal method, called coordinate system registra-
tion [11]. 

Let xl,i and xp,i be the known positions of k anchors i = 1, ... , k, 
k≥3 in the local coordinate system and the physical coordinate 
system, respectively. The goal of registration is to find a trans-
lation vector t and rotation matrix (with possible reflection) R 
that transform a point xl in the local coordinate system to the 
equivalent point xp in the physical coordinate system using the 
formula: xp = Rxl + t. 
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By the squared error, this problem is solved by minimizing 

the alignment error of the anchor nodes: 
2
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The result of the optimization problem is expressed as [11]: 
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. 

Nevertheless, this conversion only considers the alignment of 
the anchors. When the anchors are approximately collinear, the 
conversion may flip the non-anchor nodes to incorrect positions. 
As shown in Figure 5, if the result is flipped, node n1 will be 
localized to the position n1′, which is far from its ground truth 
position. To avoid this problem, ETOC requires that width of 
the anchors must be large enough according to the measurement 
errors. When the requirement is not satisfied, ETOC will try to 
realize this component through other patterns.  

3.2 Robust Realization with Two Internal Anchors 
Two internal anchors are not enough to determine a coordi-

nate system, because the coordinate system may flip against the 
axis of the two anchors. Hence, we need at least one additional 
constraint to make this problem solvable, described as follow. 
Case 2: the component contains two anchors and at least one 
edge linked to an external anchor. 

As shown in Figure 6, for each node linked to an external 
anchor, it can obtain at least three distance estimates with an-
chors: one is the direct distance measurement with the external 
anchor and the other two are the in-component distances to the 
internal anchors. Then, the physical location of the node can be 
computed by trilateration. Then, we obtain at least three nodes 
know their physical locations, so that we can convert the coor-
dinate system by following Case 1. 

3.3 Robust Realization with One Internal Anchor 
When a component contains only one anchor, we cannot di-

rectly adopt the coordinate system registration. In this section, 
we present a novel robust mechanism to address this problem.  

The internal anchor can only prevent translation of the  

 

 
Fig. 6. Illustration of Case 2 

 
component. To make the coordinate system conversion problem 
solvable, two edges (distance measurements) are required to 
eliminate possible rotation and reflection, described as follow. 
Case 3: the component contains one anchor and two distinct 
non-anchor nodes connecting with two distinct anchors. 

As illustrated in Figure 7, the shaded area denotes a com-
ponent C, and it contains an anchor a1 and two nodes n1, n2 
sharing two edges with two external anchors a2, a3. Let α, θ, and 
ϕ denote the angle values of ∠a2a1a3, ∠n1a1a2, and ∠n2a1a3, 
respectively. Since all the distances are known, we can compute 
the values of these angles from Δa2a1a3, Δn1a1a2, and Δn2a1a3, 
respectively. Define S={α+θ+ϕ, α+θ−ϕ, α−θ+ϕ, α−θ−ϕ}. 
Let δ denote min{|cosβ1 − cosβ2|} for all β1, β2∈S and l1, l2 
denote the in-component distances of node pair (a1,n1), (a1,n2), 
respectively. Then, the upper bound of ranging errors under 
which the component can be realized uniquely (defined as the 
error tolerance of the component) can be expressed as: 

1 2

1 2

1
2C

l lT
l l

δ=
+

. 

We leave the proof of this proposition in Appendix. By 
comparing error tolerance TC with the measurement error, the 
worst-case probability of ambiguities is bounded. If the error is 
lower than TC, ETOC can realize this component robustly. 

ETOC converts the coordinate system by the following two 
steps. First, ETOC computes the physical locations of node n1 
and node n2. As shown in Figure 7, by the distance constraints, 
node n1 may flip against axis a1a2, thus to have two candidate 
locations denoted by n1 and n1′ in the figure. Similarly, node n2 
may flip against axis a1a3, thus to have two candidate locations 
denoted by n2 and n2′. Hence, the number of candidate distances 
between nodes n1 and n2 is four, i.e. the distances between the 
location pairs (n1, n2), (n1, n2′), (n1′, n2), and (n1′, n2′). Then, 
ETOC selects the candidate distance with minimum difference 
from the in-component distance between nodes n1 and n2. Note 
that each candidate distance uniquely determines a location pair 
of nodes n1 and n2. As a result, nodes n1 and n2 are located 
simultaneously. Together with anchor a1, we obtain three nodes 
that know their physical coordinates. Then, following Case 1, 
ETOC converts the coordinate system. 

3.4 Robust Realization with No Internal Anchor 
When the distance measurements are accurate, four inter-

connected edges are able to form a system of overdetermined 
simultaneous equations for converting a coordinate system [5]. 
However, such mechanism is sensitive to the measurement  
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errors. To avoid the ambiguities, we solve this case by five 
interconnected edges, which is fairly close to the optimal result. 
Case 4: there are five edges connecting the component with 
anchors forming one of the structures shown in Figure 8. 

As shown in Figure 8(a), there are three distinct nodes n1, n2, 
and n3 in the component, where node n1 and node n2 share two 
edges with two external anchors respectively, and node n3 
shares an edge with another external anchor. We label the an-
chors by a1, a2, a3, a4, and a5. Though we use different notations 
for these anchors, we only demand that they map to at least three 
distinct anchors. We draw two lines through a1, a2, and a3, a4, 
and they intersect at the point a′. Then, the physical location of 
point a′ is known. As shown in Figure 8(a), the angle value of α 
can be computed from Δa′a1a4. Further, as Δn1a1a2 and length 
a′a2 are known, we can compute angle value θ and distance l1 
from Δa′n1a1. Similarly, we can compute the angle value ϕ and 
distance l2 from Δa′n2a4. As we already obtain the angle values 
of α, θ, and ϕ as well as the distances of l1 and l2, we can 
evaluate the robustness of this structure by error tolerance. If it 
is robust, we get the physical positions of node n1 and node n2 
by Case 3. Taking nodes n1 and n2 as two anchors, we can 
convert the coordinate system by the case with two internal 
anchors, i.e. Case 2. According to case 2, an additional edge (n3, 
a5) is required. Finally, after computing the location of node n3, 
the whole component is located. 

As coordinate system conversion is symmetric, this method 
can also work when we exchange anchors and the internal nodes, 
as shown in Figure 8(b). In addition, there is a special case that 
the two lines a1a2 and a3a4 are parallel (i.e. the point a′ does not 
exist). Then, we can testify that the error tolerance of this 
structure is zero. Hence, this special case is non-robust. 

Further, we conclude the completeness of ETOC. Compared 
with the complete pattern set shown in Figure 3, ETOC com-
pletely solves three out of four patterns. Specifically, cases 1-3 
of ETOC solve patterns (a)-(c), respectively. Case 4 in ETOC 
partially solves pattern (d). Case 4 requires five edges, while the 
optimal result of pattern (d) requires four edges. In a word, 
ETOC can provide robustness for most patterns of original 
component-based localization. Finally, we show the details of 
ETOC implementation in Algorithm 1. 

Though we describe ETOC in the centralized way for clarity, 
ETOC can be implemented in a distributed way by geographic 
hash table (GHT) [12]. Using GHT, a component can integrate  
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Fig. 8. Illustration of Case 4 

 
the distance measurements with another component (or the 
anchors) to a node at a specified in-component position. Thus, 
the specified node can determine whether the component can be 
localized or merged with another component. 

 

Algorithm 1  ETOC 
Input: the ranging graph G, the corresponding measured distance of 
each edge, the anchor node set Anchors, and corresponding physical 
positions of anchors. 
Output: the localized node set and the position estimates 

1:/* Invoke component generation process to partition G into com-
ponents and isolated nodes. */ 
C = GenerateComponents(G). 

2:/* Set anchors as localized nodes*/ 
Localized = Anchors 

3:while C≠∅ do 
4: /*Find and localize the components or isolated nodes*/ 

C = RobustRealizeComponents(C) 
5: /*Merge the components or isolated nodes*/ 

C = RobustMergeComponents(C) 
6: if C does not change in this loop then 
7: break 
8:return Localized and the corresponding positions 

RobustConvert(local, target) 
1:switch pattern of 
2: Case 1: 
3: if the width of the aligning nodes in the local coordinate sys-

tem or in the target coordinate system is below the threshold 
then 

4: return FALSE 
5: else 
6: Compute the conversion tuple (R, t) 
7: break 
8: Case 2: 
9: if the trilateration is non-robust then 

10: return FALSE 
11: else 
12: Compute the position of the node in the target coordinate 

system by trilateration 
13: goto Case 1 
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14: Case 3: 
15: if the error tolerance is below the maximum error then 
16: return FALSE 
17: else 
18: Compute the positions of the two nodes in the target coor-

dinate system 
19: goto Case 1 
20: Case 4: 
21: if the error tolerance is below the maximum error then 
22: return FALSE 
23: else 
24: Compute the positions of the two nodes in the target coor-

dinate system 
25: goto Case 2 
26:/* When it passes all test, the result is robust */ 
27:return TRUE and the conversion tuple (R, t) 
GenerateComponents(G) 

1:C = ∅ 
2:while G contains unchecked triangles t do 
3: if the width of t is beyond the threshold then 
4: /* Create the component ct */ 

Construct a local coordinate system from the distance meas-
urements of t 

5: while existing a node n that can perform trilateration with
component ct do 

6: if the trilateration is robust then 
7: ct = ct∪n 
8: G = G\ct 
9: C = C∪ct 

10:/* The remainder nodes in G are isolated nodes */ 
C = C ∪ G 

11:return C 
RobustRealizeComponents(c) 

1:while existing an isolated node n that can process trilateration to 
nodes in Localized do 

2: if the trilateration is robust then 
3: C = C\n 
4: Localized = Localized∪n 
5:while existing a component c that matches the realization patterns

do 
6: if RobustConvert(c, Anchors) then 
7: C = C\c 
8: Localized = Localized∪c 
9:return C 

RobustMergeComponents(C) 
1:while existing an isolated node n that can process trilateration to a 

component c do 
2: if the trilateration is robust then 
3: C = C\c, C = C\n, c = c∪n 
4: C = C∪c 
5:while existing two components c1 and c2 that match the patterns do
6: if RobustConvert(c1, c2) then 
7: c = c1∪c2, C = C\{c1, c2} 
8: C = C∪c 
9:return C 

4. Experiments 
We evaluate ETOC by both a real-world system and exten-

sive simulations.  

4.1 Experiment Setup 
To validate the robustness and the performance, we evaluate 

ETOC on a real-world sensor network for forest monitoring (the 
GreenOrbs project [13, 14]). Currently, the network consists of 
120 TelosB nodes that are deployed in an area of 126×145m2. 
Based on the Time of Arrival (ToA) of acoustic signals, the 
inter-node distances are measured with maximum error of 0.3m. 
The average degree of the distance graph is 7.2. That is, the 
network is sparse for localization, considering the fact that 
trilateration requires the average degree to be beyond 10 for 
entirely locating a network [9]. Anchor nodes are manually 
configured on the boundary of the deployed region. We use this 
network to show the performance of ETOC, i.e. conquering 
network sparseness and anchor sparseness. Further, we com-
pared the localization result with that of BCALL [5] to show the 
accuracy of ETOC. 

Besides the real-world system test, we also conduct extensive 
simulations to evaluate ETOC under a wide range of parameters. 
The scenario is a square normalized region [0,1]2 with randomly 
distributed 200 nodes, and we select a certain percentage of the 
nodes as anchors. We adopt distance measurement range r to 
control the density of the network. The distance information 
between neighboring nodes is corrupted by zero mean additive 
Gaussian noise [3], N(0, σ2). We take three deviations, i.e. 3σ, 
as the maximum error, so that the threshold for determining 
robustness is also 3σ. For each set of simulations, we take 
multiple runs and report the average. 

We use three metrics in our simulations: performance, ac-
curacy, and cost. The proportion of robustly located nodes out 
of all non-anchor nodes shows the performance of each algo-
rithm. The standardized position estimate error (SPEE) indi-
cates the localization accuracy of each algorithm, defined as the 
ratio of the mean position estimate error to the measurement 
range: 

1

1 ˆ|| || 100%
n

i i
i

SPEE p p
nr =

= − ×∑  

where n is the total number of located nodes, r is the range of 
distance measurement, pi and ˆ ip are the ground truth and esti-
mated position of node i, respectively. We evaluate the cost by 
the mean number of trilaterations (a.k.a. multilaterations) 
needed for locating a node. When no nodes are localized from a 
network instance, i.e. n=0, we define the SPEE and cost to be 
not-a-number and do not count these data in the final statistic. 
Moreover, we conduct the experiments by controlling the fol-
lowing parameters: the standard deviation of the ranging errors 
and the mean degree of the network. 

We compare ETOC with the state-of-the-art design, robust 
quadrilaterals (RQ) [9], in the simulations. RQ is a node-based 
design for guaranteed robustness, i.e. structural uniqueness of 
the localization result. The basic localization unit of RQ is 
four-node local maps. RQ sets a bound on the geometric ele-
ment to avoid flip ambiguity, which is the only structural  
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Fig. 9. Distance graph of the network 

 
deformation of such local maps. Consequently, the result of RQ 
is proved to be robust under noisy distance measurements. We 
implement full RQ algorithm with cluster optimization to 
mitigate error accumulation. 

4.2 Real-World System Test 
We compare ETOC with an extended version of BCALL [5]. 

For BCALL, we first finitely localize the components by solv-
ing simultaneous polynomial equations. Then, we select the 
candidate result with minimum stress, which is defined as the 
squared discrepancy between the localized inter-node distances 
and the measured distances. As they are both component based 
algorithms, they follow the same execution procedure. Figure 9 
shows the state of the network after component generation, in 
which the solid squares denote anchors and the soft circles 
denote non-anchor nodes. The details of each step are as fol-
lows: 

1. After component generation step, this network is parti-
tioned into five components and eight isolated nodes, as shown 
in Figure 9. 

2. Then, we use the patterns of ETOC and BCALL to realize 
the components. First, component 1 can be localized through 
Case 1 (Pattern (a)), and component 2 can be localized through 
Case 2 (Pattern (b)). 

3. After component 1 is localized, component 3 can be lo-
calized through Case 3 (Pattern (c)). 

4. Next, component 4 is localized through Case 3 (Pattern 
(c)). 

5. Finally, all isolated nodes can be localized by trilateration. 
We show the average error of each component and the iso-

lated nodes (the last column) in Figure 10. The error is stan-
dardized to be the percentage of the maximum distance meas-
urement range. From this figure, we conclude that ETOC 
achieves lower localization error than BCALL. Further, the 
error for each component is quite stable, while BCALL will lead 
to error accumulation. Clearly, ETOC performs better in error 
control. Then, we conduct extensive simulations to evaluate 
ETOC under various configurations. 

4.3 The Impact of Measurement Errors 
In this section, we evaluate performance, accuracy and cost 

of ETOC, when the standard deviation of the errors varies. We  
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Fig. 10. The average error for each component 

 
fix the anchor proportion to 10% and set the average degree to 
be 25. The maximum proportion of error in distance measure-
ment varies from 0% to 20% with step length 1%. We report the 
mean result of 50 network instances in Figure 11. 

Figure 11(a) plots the proportion of successfully located 
nodes against the error magnitude. The performance of ETOC 
decreases slightly with the increase of error magnitude, because 
the increased errors may make some components fail to pass the 
robust test. In contrast, the performance of RQ decreases 
sharply when the error magnitude exceeds 15%. RQ relies on 
generating uniformly overlapped local maps to produce a global 
map. With the increase of ranging errors, the robust test of RQ 
will drop more local maps, so that the performance decreases 
sharply when RQ fails to generate adequate overlapped local 
maps. 

Figure 11(b) plots the SPEE against error magnitude. The 
SPEE of each algorithm is approximately linear with the rang-
ing errors. As we do not include the instances that no node is 
localized in the final statistics, the valid instances for RQ be-
come less with the increase of error magnitude. Hence, the 
SPEE of RQ fluctuates more when the maximum error exceeds 
10%. Over all the tested range, the SPEE of RQ is always higher 
than that of ETOC. RQ always uses the four-node local maps as 
basic localization units. Hence, nodes can only use three dis-
tance measurements at a time, no matter how many neighbors 
are available. In contrary, ETOC takes advantage of all meas-
urements with neighboring nodes. Using more measurements 
can clearly diminish the error of the result. 

Figure 11(c) shows the number of trilaterations needed to 
locate a node for each algorithm. The cost of ETOC is near 
optimal over the tested range. In contrast, the cost of RQ first 
increases slightly for less than 15% errors. Then, the cost in-
creases sharply when the error further enlarges. Both of the 
algorithms need to generate all components or local maps in the 
generation step, no matter whether they are finally localized or 
not. As a result, the total cost is approximately a constant for 
each algorithm. Consequently, the average cost is reversely 
proportional to the number of successfully localized nodes. 

4.4 The Impact of Network Density 
In this section, we evaluate the performance, accuracy and 

cost of ETOC, when the network density varies. We fix the 
anchor proportion to 10% and set the errors to be at most 10% of  
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Fig. 12.  The impact of average degree 

 
distance measurement values. We adopt an empirical formula to 
control the average degree of the network instances linearly. 
The average degree of each network instance varies from 0 to 30 
with step length about 0.2. 

Figure 12(a) plots the proportion of robustly localized nodes 
against average degree. When the network density enlarges, 
both of the algorithms locate more nodes. ETOC can locate the 
entire network when the average degree is beyond 10. Being a 
component-based algorithm, ETOC inherits the characteristic 
of high performance. Component-based localization can inte-
grate information on the granularity of components, thus can 
work well with low network density as well as low anchor 
density. In contrast, RQ demands the average degree to be over 
25 for entirely localizing a network. Indeed, to guarantee ro-
bustness, RQ drops a large proportion of local maps in the 
local-map generation step, so that RQ needs high network den-
sity to compensate this. 

Figure 12(b) plots the SPEE against average degree. The 
SPEE of ETOC decreases when the average degree increases. In 
contrast, the SPEE of RQ keeps in the same level over all the 
tested range. RQ can hardly benefit from the increase of average 
degree, because RQ can only use three distance measurements 
at a time when generating a local map. In contrary, ETOC can 
utilize all measurements with neighboring nodes. Using more 
measurements can clearly diminish the error of the result, es-
pecially when the average degree is high. 

Figure 12(c) plots the mean number of trilaterations needed 
for locating a node by each algorithm. With the increase of 
network density, the cost of each algorithm decreases. As we 

have discussed, the mean cost is reversely proportional to the 
total number of successfully localized nodes. The cost of RQ is 
higher than that of ETOC, because ETOC locates more nodes 
than RQ does. 

5. Related Work 
Localization in wireless networks has been attracted sig-

nificant research interest. Many researchers model the local-
ization problem as a weighted graph realization problem and 
employ rigidity theory to analyze the corresponding problems 
[2, 7, 15-18]. This model is also widely used for theoretical 
research [19] and algorithm design [2, 5]. These researches 
provide valuable insight in localization problem. Nevertheless, 
this model assumes that the distance measurements between 
neighboring nodes are accurate, which is over-idealized for 
current ranging techniques [20]. Compared with these designs, 
ETOC guarantees the robustness of the result even under noisy 
distance measurements, which is more practical and realistic. 

To handle the noisy ranging measurements, many researchers 
propose to minimize the impact of ranging errors in localization 
[21-29]. Moore et al. introduce the concept of Robust Quadri-
laterals to avoid flip ambiguity [9]. They point out that flip 
ambiguity is the only structural deformation for locating a sin-
gle node, so that the result is proved to be robust. However, the 
experimental results show that this design suffers low per-
formance, working properly only in dense networks. In contrast, 
ETOC inherits the high localization performance from com-
ponent based localization. 

Basu et al. propose to locate wireless networks with both 
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distance and angle information [30]. They relax the related 
problem to a convex form and solve it by linear programming. 
This design can provide a clear region estimate for each local-
ized node, thus can properly avoid possible structural deforma-
tion. However, this design relies on the knowledge of both 
distance and angle measurements, which is not always available 
in practice. 

Liu et al. [3] and Yang et al. [4] propose to enhance tradi-
tional trilateration with error management. They track the error 
in each step to minimize the expected error of the final local-
ization result. Their methods perform well on diminishing the 
overall localization error of the result. However, they cannot 
provide any robustness guarantee. As structural deformation is 
topology-sensitive, it can be triggered by any tiny errors in 
special case. Hence, purely tracking errors cannot completely 
avoid potential structural deformations. 

In addition, some researchers use the Cramer-Rao lower 
bound (CRLB) to characterize the error of network localization 
[31-34]. CRLB provides a lower bound on the variance 
achievable of an unbiased location estimator [33]. The same as 
error management, purely investigating the errors cannot 
guarantee robustness of the localization result. 

6. Conclusions 
We propose the concept of error tolerance for component 

based approaches. By exploiting a set of patterns, we design a 
robust localization algorithm, ETOC, which is the first work to 
address ranging noises for component based localization. 
Compared with existing works, ETOC obtains higher localiza-
tion performance and better error control. We evaluate ETOC 
through a real-world system and extensive simulations. The 
experimental results show that ETOC works properly in sparse 
networks and achieves more accurate results. 
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Appendix 

Proof of the Structural Error Tolerance 
We prove the structural error tolerance and analyze the bound 

of the error tolerance estimation, which is the basis of ETOC 
design. 

Theorem 1. Given a component, it contains an anchor a1 and 
two distinct non-anchor nodes n1 and n2 sharing two edges with 
two distinct anchors a2 and a3, respectively. Let α, θ, and ϕ 
denote the angle separations of ∠a2a1a3, ∠n1a1a2, and ∠n2a1a3, 
respectively. Define set S as follow, S={α+θ+ϕ, α+θ−ϕ, 
α−θ+ϕ, α−θ−ϕ}. Let l1 and l2 denote the in-component dis-
tances of node pair (a1, n1) and (a1, n2), respectively, and δ 
denote min{|cosβ1 − cosβ2|} for all β1, β2∈S. Then, the lower 
bound of the structural error tolerance for node pair (n1,n2) is: 

1 2

1 2

1
2C

l l
T

l l
δ=

+
. 

Proof: As shown in Figure 13, by the measurements to an-
chors a1 and a2, node n1 has two candidate positions, n1 and n1′. 
Similarly, node n2 has two candidate positions, n2 and n2′. Then, 
there are four possible distances of node pair (n1,n2), uniformly 
denoted by a set 2 2

1 1 1 2{ 2 cos | }D l l l l Sβ β= + − ∈ . If we deter-
mine the positions of node n1 and n2 by selecting the distance in 
D that has the lest absolute difference with the distance of node 
pair (n1,n2), then the robustness condition must guarantee that 
other candidate distances will not corrupt this selection proce-
dure. That is, the distances in D must be differentiable to each 
other even when error occurs. Consequently, the structural error 
tolerance is denoted by min{|d1−d2|/2} for all d1, d2∈D. 

For any β1, β2∈S, they will select two distances in D, denoted 
by d1 and d2. Then, the error tolerance of this two distances is 
t1,2=|d1−d2|/2. Hence, we obtain:  
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Fig. 13. Proof of robustness 
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Fig. 14. The lower bound of T1,2 
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where a=(l1
2+l2

2)/l1l2, b=l1l2/2. 
We construct the following conic section:  

f(x) = x2 − 2[a − (cosβ1
 + cosβ2)]x + (cosβ1 − cosβ2)2. 

Define 2
1,2 1,2 /T t b= . Then, T1,2 is the smaller root of the 

equation f(x) = 0. Clearly, T1,2 lies in the interval [0, a − (cosβ1
 + 

cosβ2)]. We illustrate the curve of f(x) in Figure 14, where p1 
denotes the value of T1,2. Considering the line op2, which is the 
tangent of f(x) at the position (0, (cosβ1 − cosβ2)2), it intersects 
the x-coordinate at the point p2. 

Hence, the value of p2 is a lower bound of T1,2. That is, 
2
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β β
β β
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, 

and we use lb1 to denote this lower bound. Considering cosβ1 + 
cosβ2 ≥ -2, we obtain another lower bound of T1,2: 

2
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denoted by lb2. Substituting a and b, we obtain a lower bound of 
t1,2, that is, 

1 2
1,2 1 2
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1 | cos cos |
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. 

By this conclusion, for arbitrarily selected β1, β2∈S, we ob-
tain the lower bound of the structural error tolerance for node 
pair (n1,n2): 

1 2

1 2

1
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l l
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l l
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+
.  

71


